منابع مشابه
Theory of Dirac Electrons in Organic Conductors
The dynamical property of electrons with the tilted Dirac cone was examined using the tilted Weyl equation. The polarization function exhibits cusps and nonmonotonic structures by varying both the frequency and the momentum. A pair of tilted Dirac cones exhibits a new plasmon for the intermediate magnitude of momentum owing to the combined effects of two tilted cones. Dirac electrons with the z...
متن کاملCollective Excitations of Dirac Electrons in Graphene
Two-dimensional electrons in graphene are known to behave as massless fermions with Dirac-Weyl type linear dispersion near the Dirac crossing points. We have investigated the collective excitations of this system in the presence or absence of an external magnetic field. Unlike in the conventional two-dimensional electron system, the ν = 1 m fractional quantum Hall state in graphene was found to...
متن کاملPhase transitions of Dirac electrons in bismuth.
The Dirac Hamiltonian, which successfully describes relativistic fermions, applies equally well to electrons in solids with linear energy dispersion, for example, in bismuth and graphene. A characteristic of these materials is that a magnetic field less than 10 tesla suffices to force the Dirac electrons into the lowest Landau level, with resultant strong enhancement of the Coulomb interaction ...
متن کاملTuning the valley and chiral quantum state of Dirac electrons in van der Waals heterostructures.
Chirality is a fundamental property of electrons with the relativistic spectrum found in graphene and topological insulators. It plays a crucial role in relativistic phenomena, such as Klein tunneling, but it is difficult to visualize directly. Here, we report the direct observation and manipulation of chirality and pseudospin polarization in the tunneling of electrons between two almost perfec...
متن کاملEffect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2018
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.97.205421